
http://hpc.sagepub.com

Computing Applications 
International Journal of High Performance

DOI: 10.1177/109434209901300205 
 1999; 13; 154 International Journal of High Performance Computing Applications

Aiichiro Nakano 
 A Rigid-Body-Based Multiple Time Scale Molecular Dynamics Simulation of Nanophase Materials

http://hpc.sagepub.com/cgi/content/abstract/13/2/154
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:International Journal of High Performance Computing Applications Additional services and information for 

 http://hpc.sagepub.com/cgi/alerts Email Alerts:

 http://hpc.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.co.uk/journalsPermissions.navPermissions: 

 http://hpc.sagepub.com/cgi/content/refs/13/2/154 Citations

 at Katholieke Universiteit Leuven on September 12, 2009 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://hpc.sagepub.com/cgi/content/refs/13/2/154
http://hpc.sagepub.com


COMPUTING APPLICATIONS
SIMULATION OF NANOPHASE MATERIALS

A RIGID-BODY-BASED MULTIPLE
TIME SCALE MOLECULAR
DYNAMICS SIMULATION OF
NANOPHASE MATERIALS

Aiichiro Nakano

DEPARTMENT OF COMPUTER SCIENCE, CONCURRENT
COMPUTING LABORATORY FOR MATERIALS SIMULATIONS,
LOUISIANA STATE UNIVERSITY,
BATON ROUGE, LOUISIANA, U.S.A.

Summary

Nanophase technology achieves superior material prop-
erties by assembling nanometer-size clusters. Structures
on multiple-length scales and a hierarchy of time scales
are essential for the design and control of nanophase ma-
terials.However, coexistence of a wide range of length and
time scales hinders atomistic simulations of these materi-
als. A new algorithm is developed for large-scale, longtime
molecular dynamics simulations by combining (1)
quaternion-based, rigid-body dynamics for global cluster
motions; (2) implicit integration of Newton’s equations for
the coalescence of clusters; and (3) normal-mode analy-
sis of fast atomic oscillations. The new scheme, using a
time step ∆t of 10−12 seconds, speeds up a conventional
explicit integration scheme (∆t = 2 × 10−15 seconds) by a
factor of 28. A parallel implementation of the scheme
achieves an efficiency of 0.94 for a 1.28-million-atom
nanocrystalline silicon nitride solid on 64 nodes of an IBM
SP computer.

Introduction

Nanophase technology is revolutionizing aerospace, sur-
face transportation, electronics, and advanced manufac-
turing industries (Siegel, 1996). Superior material prop-
erties such as hardness and toughness are achieved by
consolidating clusters of nanometer size (10–9 m) (see Fig-
ure 1).

Design of nanophase materials involves structures on
multiple-length scales: atomic bonds (10–10 m); defects,
micropores, and interfaces (10–9 m); and nanoclusters
(10–8-10–7m) and their aggregates (> 10–6m). The essential
issue is how atomic-level processes lead to superior mate-
rials properties on macroscopic scales. Since each cluster
contains 104 to 105 atoms and material properties depend
on the collective motion of 102 to 104 clusters, atomistic
simulations involving 106 to 109 atoms are required. Re-
cent developments in parallel processing technology and
multiresolution numerical algorithms (Kalia et al., 1993;
Nakano, Vashishta, and Kalia, 1993; Nakano, Kalia, and
Vashishta, 1994; Nakano and Campbell, 1997) have en-
abled multimillion-atom simulations of nanophase mate-
rials based on the molecular dynamics (MD) method
(Kalia, Nakano, Omeltchenko, et al., 1997; Kalia,
Nakano, Tsuruta, et al., 1997; Tsuruta et al., 1998).

The multiple-length scale structures in nanophase ma-
terials lead to a hierarchy of time scales for their dynam-
ics. For stable integration of the fastest atomic motions,
the unit time step of MD simulations should be on the or-
der of 10−15 seconds. However, rearrangement of nano-
clusters takes place in 10–6 seconds or longer. The latter is
essential for the control of various industrial processes
such as gas phase condensation (Siegel, 1996) and sinter-
ing (Scherer, 1990). The challenge is to perform multi-
million-atom MD simulations for the required 109 steps;
such simulations are beyond the scope of current compu-
tational technology.

Large-scale simulations in diverse application areas
are often associated with stiff dynamic systems (Hind-
marsh and Petzold, 1995; Skeel, Zhang, and Schlick,
1997), which involve a wide range of time scales. An ex-
ample is the conformational change of biomolecules
(Zhang and Schlick, 1993). In quantum chemistry, stiff
harmonic action arising from the kinetic energy of quan-
tum particles (which is studied in quantum simulations
with the unit time step of∆t ~ 10-17seconds) is inseparable
from molecular motions on the time scale of 10-12 seconds
(Tuckerman et al., 1996). In mineralogical simulations,
stiff atomic motions in structural units (such as SiO4 tetra-
hedra) are coupled to slow rearrangement of these units
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(Hammonds et al., 1994). In astrophysics, billion-year
evolution of the solar system is affected by planet motions
on the time scale of a year (Wisdom and Holman, 1991).
For further advancement of large-scale, longtime dy-
namic simulations, a multidisciplinary approach is
needed.

Various approaches have been developed for longtime
MD simulations. One approach introduces constraints to
freeze high frequency modes. This enables the use of a
large time step, assuming that the high-frequency modes
are unimportant for global conformational changes
(Ryckaert, Ciccotti, and Berendsen, 1977). In the sub-
space dynamics approach by Space, Rabitz, and Askar
(1993), low-frequency modes are selected by diagonaliz-
ing the dynamical matrix of the system. Other schemes
use different time steps for different force components
(Streett, Tildesley, and Saville, 1978; Grubmüller et al.,
1991; Tuckerman, Berne, and Martyna, 1991). Ordinary
differential equations can be integrated using a large time
step by implicit integration schemes (Hindmarsh and
Petzold, 1995; Skeel, Zhang, and Schlick, 1997). For ex-
ample, an implicit Euler integrator using time step∆t is a
low-pass filter that selects motions with an eigenfre-
quency less than 1/∆t; the frozen fast motions can be inte-
grated separately by normal-mode analysis (Zhang and
Schlick, 1993). Recently, more accurate implicit integra-
tors have been proposed that are symplectic (Skeel,
Zhang, and Schlick, 1997). Symplectic integrators pre-
serve the phase-space volume, and this symplecticness is
essential for longtime stability of orbitals (Arnold, 1989).
It is also possible to take advantage of a special geometry
of the system to significantly speed up longtime MD
simulations. For example, an O(N) algorithm has been de-
veloped for the constraint dynamics of linear chain and
tree geometry molecules (Jain, Vaidehi, and Rodriguez,
1993; Mathiowetz et al., 1994). In addition, proper coor-
dinate transformations often separate the degrees of free-
dom with different time scales and thereby speed up nu-
merical integration (Wisdom and Holman, 1991;
Hammonds et al., 1994; Tuckerman et al., 1996).

In this paper, a new longtime integrator is developed
for large-scale MD simulations of nanophase materials.
The new algorithm combines (1) quaternion-based,
rigid-body dynamics (Evans and Murad, 1977) for nano-
clusters to represent their relative rotation; (2) implicit in-
tegration of Newton’s equations (Skeel, Zhang, and
Schlick, 1997) to represent the coalescence of clusters;
and (3) normal-mode analysis of fast atomic oscillations
(Zhang and Schlick, 1993). The rigid-body/implicit-
integration/normal-mode (RIN) scheme is implemented
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Fig. 1 Molecular dynamics simulations of nanocluster-
assembled Si3N4 contain 108 clusters, each consisting of
10,052 atoms (total of 1,085,616 atoms). Small spheres repre-
sent Si or N atoms, and one of the nanoclusters is enclosed by
a white circle. The walls represent partition boundaries to di-
vide workloads used in the spatial decomposition scheme for
parallel computing.

“The multiple-length scale structures in
nanophase materials lead to a hierarchy of
time scales for their dynamics.”

“The new algorithm combines (1)
quaternion-based, rigid-body dynamics for
nanoclusters to represent their relative
rotation; (2) implicit integration of
Newton’s equations to represent the
coalescence of clusters; and (3)
normal-mode analysis of fast atomic
oscillations.”
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on parallel computers, and its performance is tested for
million-atom nanophase materials.

Methods

Sintering is a process of densification by heating. This
process is used to consolidate cluster-assembled nano-
phase materials. The early stage of sintering is driven by
(1) the relative rotation of clusters (Tsuruta et al., 1996)
and (2) the formation and growth of necks between clus-
ters via surface diffusion or viscous flow (Scherer, 1990),
while these processes are assisted by (3) local thermal
motion of atoms (see Figure 2). Processes (1) and (2) are
characterized by longtime scales (> 10–9 seconds), com-
pared with fast (10–13 seconds) atomic oscillations (3). A
reliable longtime integrator of MD equations must at least
capture these processes.

In MD simulations, a system is represented by a set of
atomic coordinates, {xi | i = 1, . . . ,N}, where N is the
number of atoms. Time evolution of the system is gov-
erned by Newton’s equations (Allen and Tildesley, 1987),

{ }m
d

dt
i

i

i i

2

2

x
g x= ( ) ,

(1)

wheremi andgi ({ xi}) = – ∂V/∂xi are the mass and force
for the ith atom, andV({ xi}) is the potential energy. We
are concerned with systems for which the potential en-
ergy is a sum of an atomic pair and triple terms (Vashishta,
Kalia, and Ebbsjö, 1995). The pair terms represent steric
repulsion, electrostatic interaction due to charge transfer
among atoms, and charge-dipole interaction. The triple
terms represent covalent bond bending and stretching.

Given atomic coordinatesx
i

n at timet n t
n

= ∆ (n= inte-
ger), we integrate equation (1) for∆t using a reference
systemr i. The reference system is a tool designed to rep-
resent two of the essential dynamics (i.e., relative rotation
of clusters and fast atomic oscillations). We thus define
the reference system as a superposition,r i = r ci + r hi. The
collective partr ci represents the rigid-body motion of
clusters, so that the system is represented by 6M degrees
of freedom for the translational and rotational motion of
M clusters (M << N). Equations of motion for the clusters
are
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Fig. 2 Sintering of nanoclusters involves various physical
processes that are treated efficiently with different numeri-
cal methods. (1) Rotation and translation of nanoclusters are
included by rigid-body dynamics; (2) anharmonic atomic
motions lead to the formation of a neck between clusters,
and these motions are included by implicit integration of
Newton’s equations; and (3) thermal atomic motions assist
the neck formation process, and these high-frequency
modes are dealt with normal-mode analysis.
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whereMc, Rc, andL c are the mass, center of mass, and
angular momentum of thecth cluster (c = 1, . . . ,M),
r e s p e c t i ve l y. In equat ions (2) and (3),

{ }g g r
c

i c

ci
=

∈
∑ i

inter ( ) and { }T r g r
c

i c

i ci ci
m= ×

∈
∑ i

inter ( )

are the force and torque on thecth cluster, where
{ }g r r

i

inter

inter
( ) /

ci ci
V= − ∂ ∂ . The intercluster potential

energyVinter is the contribution from atomic pairs and tri-
ples whose elements belong to different clusters. Equa-
tions (2) and (3) are integrated for∆t using the quaternion
formulation of rigid-body dynamics to avoid the numeri-
cal singularity associated with angular coordinates
(Evans and Murad, 1977). The harmonic partr hi repre-
sents the oscillation of each atom around the local poten-
tialminimumand isdefinedasasolution to the linearsystem,

m
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dt
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ii hi i
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wherex
i

* is the local potential minimum nearx
i

n and the
Hessian matrix,
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is evaluated atx
i

* . (H ij is updated every time step.) The

linear system, equation (4), describes independent har-
monic motions of individual atoms, and it can be inte-
grated analytically in terms of trigonometric functions
(Zhang and Schlick, 1993).

The residual systemzi = xi – r i satisfies

{ }( ) { }( )m
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The residual system is expected to vary slowly since the
rapidly oscillating harmonic motions are subtracted.
Therefore, equation (6) is integrated by an implicit inte-
gration scheme using∆t much larger than atomic time
scales. One implicit integration scheme is equivalent to
the conventional velocity Verlet algorithm (Allen and
Tildesley, 1987), except that the forceg

i

n +1 at time (n +

1)∆t is computed by solving a nonlinear equation (Skeel,
Zhang, and Schlick, 1997),
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“The residual system is expected to vary
slowly since the rapidly oscillating
harmonic motions are subtracted.”
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This implicit integration scheme is symplectic, and it is
stable for an arbitrarily large∆t (Skeel, Zhang, and
Schlick, 1997). Solving the nonlinear system, equation
(7), is equivalent to the minimization of a dynamics func-
tion (Zhang and Schlick, 1993),
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In this variational formulation, equation (8) is minimized
with respect to {xi} by the truncated Newton method
(Zhang and Schlick, 1993). After minimizing equation
(8) at x

i

* , the self-consistent forceg
i

n

i
m t

+ =1 22( / )∆
( )*
x x

i i

n− +1 is used to accelerate the velocity of the resid-

ual coordinate,zi.

Numerical Results

Recently, million-atom parallel MD simulations have
been performed to study the mechanical properties and
fracture of nanophase Si3N4 (Kal ia, Nakano,
Omeltchenko, et al., 1997; Kalia, Nakano, Tsuruta, et al.,
1997; Tsuruta et al., 1998). The simulations reveal self-
affine behavior of fracture surfaces, which is very close to
recent experimental observations (Daguier, Bouchaud,
and Lapasset, 1995). The nanophase materials in these
simulations were prepared by sintering hundreds of nano-
clusters, and this procedure consumed much more com-
puting time than the main fracture simulations. The pur-
pose of this section is to examine whether the RIN scheme
in the previous section can be used to prepare nanophase
materials with significantly less computing time. To as-
sess the validity of the RIN scheme in this context, we
note the main findings of recent simulations on the sinter-
ing of Si3N4 nanoclusters (Tsuruta et al., 1996): (1) nano-
clusters undergo significant rotational motion relative to
each other, and (2) thermally rough nanoclusters form an
asymmetric neck in 10–10 seconds. In the light of these
findings, we test the validity of the RIN scheme in terms
of cluster rotation and neck formation in 10–10 seconds.

The simulations involve two Si3N4 nanocrystals, each
consisting of 20,335 atoms. The starting configuration is
shown in Figure 3a. A reliable longtime integrator must
first reproduce the longtime motion of clusters correctly.
Rotational trajectories of a cluster may be visualized in
terms of the inertia tensor,
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Fig. 3 (a) Starting molecular dynamics (MD) configuration
of two 20,335-atom Si3N4 clusters. (b) The same system after
4 × 10–11 seconds. (c) Trace of the principal axes of the inertia
tensors for the two Si3N4 clusters for 10–10 seconds. We com-
pare explicit integration scheme with time step, ∆t = 2 × 10–15

seconds (explicit); rigid-body (RB) dynamics using ∆t = 10–12

seconds; the rigid-body/implicit-integration/normal-mode
(RIN) approach using ∆t = 10–12 seconds.
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( )I m x y z
i

i i i iαβ αβ α βδ α β= − =∑ | | ( , , , )d d d
2 , (9)

wheredi is the coordinate of theith atom relative to the
cluster center of mass. An instantaneous configuration of
a cluster is visualized by placing a line segment at the
cluster center. The length and orientation of the line seg-
ment represent the largest eigenvalue and the correspond-
ing eigenvector ofI αβ , respectively. Trajectory of the
cluster is visualized as a trace of the line segment.

Figure 3c shows trajectories of the two clusters for
10–10 seconds. We compare three integration methods for
Newton’s equations: (1) explicit integration with the ve-
locity Verlet scheme, using∆t = 2 × 10–15 seconds; (2)
rigid-body (RB) cluster dynamics by freezing the other
3N – 6M degrees of freedom (M = 2); and (3) the RIN
scheme. In both the RB and RIN schemes, we use∆t =
10–12seconds. Both of these schemes reproduce the trajec-
tory of the explicit integration scheme accurately.

Sintering progresses through the formation of a “neck”
between two clusters (see Figure 2). Figure 4 shows the
time evolution of the neck size, which is defined as the
number of atomic pairs whose elements belong to differ-
ent clusters but are within a cutoff length (2 Å). The RIN
scheme reproduces the explicit integration result satisfac-
torily, including the sudden increase of the neck size at
1.2× 10–10 seconds. However, rigid-body dynamics alone
cannot describe the neck formation. In fact, the two clus-
ters bounce back and come apart in this scheme. (Note
that the neck size in Figure 4 eventually becomes 0 with
the RB scheme.)

Neck formation can also be monitored by the inter-
cluster potential energyVinter, as shown in Figure 5. The
RIN scheme again reproduces the longtime behavior of
Vinter, while the RB scheme fails to capture the lowering of
Vinter by neck formation. In summary, the RIN scheme sat-
isfactorily describes the essential longtime dynamics dur-
ing sintering (i.e., relative cluster rotation and neck for-
mation). Physically, the rigid-body reference systemr ci in
the RIN scheme represents global cluster motions. As we
have seen, however, the rigid-body dynamics cannot de-
scribe neck formation. Neck formation involves the
breaking and formation of atomic bonds, and it cannot be
described by the local harmonic analysis of equation (4)
either. The implicit integration step in the RIN scheme
takes this anharmonic effect into account. The importance
of thermal atomic motions represented byr hi is that they
add random fluctuations to the initial configuration for
the implicit integration step. In this way, they assist the
neck formation, especially at high temperatures.
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Fig. 4 Neck size between two Si3N4 clusters as a function of
time. The circles and squares represent the results with the
rigid-body/implicit-integration/normal-mode (RIN) and rigid-
body (RB) schemes, respectively. They are compared with the
result of the explicit integration scheme. The RB scheme
fails to capture the neck formation between the two clusters,
while the RIN scheme reproduces the explicit integration re-
sult satisfactorily.

Fig. 5 Intercluster potential energy, Vinter, per atom as a func-
tion of time. The rigid-body/implicit-integration/normal-mode
(RIN) scheme reproduces the explicit integration result cor-
rectly, while the rigid-body (RB) scheme fails to account for
the lowering of Vinter by neck formation.

“The RIN scheme satisfactorily describes
the essential longtime dynamics during
sintering (i.e., relative cluster rotation and
neck formation).”
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Computation time of the RIN scheme to simulate the
40,670-atom Si3N4 system for 10–10 seconds is 5.4 hours
on a single processor of Digital Alpha 2100/275. It takes
150 hours to simulate the same system using an explicit
integration scheme. The RIN scheme thus speeds up a
conventional MD integration scheme by a factor of 28. It
is only possible by a low-cost computation scheme such
as RIN to simulate multimillion-atom systems for techno-
logically important time scales.

The RIN scheme is also implemented on distributed-
memory parallel computers using spatial decomposition
(Kalia et al., 1993; Nakano, Vashishta, and Kalia, 1993;
Nakano, Kalia, and Vashishta, 1994; Nakano and Camp-
bell, 1997). The entire system is divided into subdomains
of the same volume according to uniform mesh decompo-
sition, and each processor is assigned atoms in one subdo-
main (see Figure 1). To compute interatomic interaction,
atomic information is exchanged across the partition
boundaries by message passing.

The performance of the parallel RIN algorithm is
tested on the 128-node IBM SP computer at Argonne Na-
tional Laboratory. The simulated system is aggregates of
Si3N4 clusters, each consisting of 4,984 atoms. We use the
memory-bounded scaling so that the problem size is line-
arly proportional to the number of processors (Sun and
Gustafson, 1991); each processor, on average, is assigned
19,936 atoms. The largest system contains 1,275,904 at-
oms on 64 processors. Figure 6 shows the parallel effi-
ciency and communication overhead of the parallel RIN
program on the SP machine. For the largest system, paral-
lel efficiencyη = 0.94, and communication overhead is
6% of the total computation time. One MD step (∆t = 10–12

seconds) for the 1.28-million-atom system takes 7.5 min-
utes on 64 nodes of the SP computer. Argonne SP is a hy-
brid system consisting of IBM POWER processors of
SP1 and the high-speed Omega switch of SP2 (Gropp and
Lusk, 1994).

Conclusion

A new algorithm is developed for longtime MD simula-
tions of cluster-assembled nanophase materials. The RIN
algorithm combines (1) rigid-body cluster dynamics, (2)
implicit integration of Newton’s equations, and (3)
normal-mode analysis. The new scheme, using a time
step of 10–12 seconds, speeds up the conventional explicit
integration scheme, using a time step of 2× 10–15seconds,
by a factor of 28. The RIN scheme accurately describes
the essential features of nanocluster sintering (i.e., cluster
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Fig. 6 Parallel efficiency and communication overhead of
the parallel rigid-body/implicit-integration/normal-mode
(RIN) program on the IBM SP computer at the Argonne Na-
tional Laboratory. The system consists of α-Si3N4 nanoclus-
ters, each containing 4,984 atoms. The number of atoms, N,
scales with the number of processors, p, as N = 19,936 p.

“The RIN scheme thus speeds up a
conventional MD integration scheme by a
factor of 28.”
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rotation and neck formation). A parallel implementation
of the scheme achieves an efficiency of 0.94 for a 1.28-
million-atom Si3N4 nanocrystalline solid on 64 nodes of
an IBM SP computer. More recently, fuzzy clustering has
been shown to further improve the accuracy of the RIN
scheme (Nakano, 1997). For efficient preparation of
nanophase materials, we are also exploring the use of a
hybrid scheme that combines the grand canonical Monte
Carlo method (Mezei, 1980) and the RIN-based MD.
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